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Extreme drought is one of the key climatic drivers of tree mortality on a global scale. However, it remains unclear
whether the drought-induced tree mortality will increase under nocturnal climate warming. Here we exposed seedlings
of two wide-ranging subtropical tree species, Castanopsis sclerophylla and Schima superba, with contrasting stomatal
regulation strategies to prolonged drought under ambient and elevated night-time temperature by 2 ◦C. We quantified
the seedling survival time since drought treatment by measuring multiple leaf traits such as leaf gas exchange, predawn
leaf water potential and water-use efficiency. The results showed that all seedlings in the ambient temperature died
within 180 days and 167 days of drought for C. sclerophylla and S. superba, respectively. Night warming significantly
shortened the survival time of C. sclerophylla, by 31 days, and S. superba by 28 days, under the drought treatment.
A survival analysis further showed that seedlings under night warming suffered a 1.6 times greater mortality risk than
those under ambient temperature. Further analyses revealed that night warming suppressed net leaf carbon gain in both
species by increasing the nocturnal respiratory rate of S. superba across the first 120 days of drought and decreasing
the photosynthetic rate of both species generally after 46 days of drought. These effects on net carbon gain were more
pronounced in S. superba than C. sclerophylla. After 60 days of drought, night warming decreased the predawn leaf water
potential and leaf water-use efficiency of C. sclerophylla but not S. superba. These contrasting responses are partially
due to variations in stomatal control between the two species. These findings suggest that stomatal traits can regulate
the response of leaf gas exchange and plant water-use to nocturnal warming during drought. This study indicates that
nocturnal warming can accelerate tree mortality during drought.

• Night warming accelerates the mortality of two subtropical seedlings under drought.
• Night warming differently affects the drought response of leaf gas exchange and plant water-use between the two

species due to species-specific stomatal morphological traits.
• Carbon metabolism changes and hydraulic damage play differential roles in driving night-warming impacts on the

drought-induced mortality between the two species.
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Nocturnal warming accelerates drought-induced seedling mortality 1165

Introduction

Droughts have triggered widespread tree mortality in all forested
biomes with profound impacts on the carbon balance and

ecosystem functions (Allen et al. 2010, Hartmann, et al.

2018b). The negative effects of drought on tree survival can

be further exacerbated by warmer temperatures, as reported by

extensive forest dieback across the globe (Phillips et al. 2009,

Peng et al. 2011, Allen et al. 2015, Breshears et al. 2021). In
most forest areas, the night warms more quickly than the day

(Easterling et al. 1997, Xia et al. 2014, Thorne et al. 2016).
Hence, a mechanistic understanding of the sensitivity of drought

mortality to nocturnal warming is essential for predicting forest

dynamics in the future.
Drought mortality has been linked to temperature-dependent

physiological processes in plants. First, rising temperature
directly elevates carbon loss by stimulating respiratory rates
and reducing photosynthetic capacity (Crafts-Brandner and
Salvucci 2000, Dusenge et al. 2020), intensifying the risk
of carbon starvation during drought (Galbraith et al. 2010,
McDowell et al. 2018). For example, diurnal warming induces
earlier stomatal closure and causes negative carbon balance
over the whole plant under drought treatment (Zhao et al.
2013). If the carbon deficit persists, plants grown at higher
temperature will suffer a more severe reduction in stored
carbohydrates than ambient plants (Du et al. 2020), leading to
a higher risk of carbon starvation (Hartmann 2015, Hartmann,
et al. 2018a). Furthermore, elevated cumulative respiration
induced by increased daily temperature triggers more rapid
seedling mortality from drought (Adams et al. 2009, 2017).
Second, elevated temperature also modulates plant water-use
through its positive effects on vapor pressure deficit (VPD),
yielding more significant risks of hydraulic failure via higher
evaporative demand (McDowell and Allen 2015, Grossiord et
al. 2020). For example, along a grassland–forest ecotone, the
warming-induced increase in daily temperature and VPD hastens
desiccation-induced mortality by enhancing plant transpiration
rates and xylem water potentials (Will et al. 2013). Diurnal
warming has been found to accelerate drought-induced tree
mortality by inducing more extensive water-use, lower net
carbon gain and earlier vascular dysfunction (Duan et al.
2014, 2015). The warming effect on these physiological
characteristics interactively affects the water-for-carbon trade-
offs on tree functioning during drought (Meir et al. 2015, Novick
et al. 2016). Although the critical role of increasing mean
diurnal temperature in driving tree eco-physiological processes
is known, how nocturnal warming can influence drought-driven
tree mortality remains unclear.

Nocturnal warming can affect plant survival during drought
by enhancing the respiratory loss of carbon at night. For
example, regional analyses of tropical forest plot data have
shown that increased night-time temperature stimulates
leaf respiration and causes higher tree mortality rates

(Clark et al. 2010). By contrast, some experimental studies also
suggest that night-warming-induced carbon losses from respi-
ration can increase foliar carbohydrate depletion overnight and
trigger a compensatory increase in tree daytime photosynthesis
(Turnbull et al. 2002, 2004). The photosynthetic compensation
under nocturnal warming can strengthen carbon sequestration
(Wan et al. 2009, Xia et al. 2014) and community resistance
to drought in arid and semi-arid grasslands (Yang et al. 2016).
However, soil drought can convert the night-warming impact
on tree growth from positive to negative in forests (Zhu et al.
2020). On the global scale, the elevated respiratory loss at
higher night temperature is one of the mechanisms to explain
the reduced tropical tree growth (Clark et al. 2003, Feeley et
al. 2007) and interannual variability of terrestrial carbon sink
(Anderegg et al. 2015).

Warming at night can also influence drought-induced tree
mortality by altering plant hydraulic functions, such as stimulat-
ing plant nocturnal water loss by increasing evaporative loads
(Zeppel et al. 2012, Zhao et al. 2013). Consequently, the
increased leaf water loss can reduce the recovery of xylem
embolism and hydraulic redistribution during the night (Howard
et al. 2009, Fuentes et al. 2013), causing higher vulnerability
to drought stress and mortality (Zeppel et al. 2012, Choat et
al. 2018). A field experiment has shown that night warming
with drought can increase the mortality rate of Pinus halepensis
seedlings by inducing a higher loss of xylem hydraulic con-
ductivity (Balducci et al. 2014). However, the evidence is still
lacking to show the potential impacts of night-time warming on
drought-induced tree mortality via daytime water-use in plants
(Sadok and Jagadish 2020).

Despite the proximate cause of hydraulic dysfunction to
drought-induced mortality, the degree of carbohydrate deple-
tion varies between species among studies (Anderegg and
Anderegg 2013, Anderegg et al. 2016). Differences in the
physiological mechanisms of drought-induced mortality among
experiments have been linked to uncertainty in traits and the
associated ecological strategies among species, including plant
growth form, species or genetic differences or plant water-
use strategy. For instance, two Eucalyptus species exhibit rapid
declines in water status and complete losses of xylem hydraulic
conductance under severe water deficit. In comparison, the
conservative growth and water-use strategy of Pinus radiata
resulted in a longer duration to drought mortality, but significant
carbohydrate depletion (Mitchell et al. 2013). However, alter-
native evidence indicates stomatal regulation strategies did not
generally change the relative contributions of hydraulic failure
and carbohydrate depletion during tree mortality from drought
(Anderegg and Anderegg 2013, Duan et al. 2015). Studies
using two species of contrasting stomatal regulation strategies
further observed that diurnal warming accelerates drought-
induced mortality for relatively isohydric P. radiata, but not for
relatively anisohydric species (e.g., Callitris rhomboidea) (Duan
et al. 2015). In addition, the different sensitivities to water stress
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among tree species partly depend on xylem anatomy, which is
functionally related to a suite of traits that govern plant drought
response (Taneda and Sperry 2008, Klein 2014, Elliott et al.
2015). The large earlywood vessels of ring-porous species
with anisohydric behaviors have been suggested to be more
susceptible to hydraulic damage, potentially causing embolism
at low water potentials (Kannenberg et al. 2019). However,
little is known about the consequences of trait combinations on
species performance during drought, especially under warmer
conditions.

Subtropical evergreen broadleaf forests in East Asia store a
large amount of carbon and are critical in regulating terrestrial
feedbacks to climate change (Yu et al. 2014, Cui et al. 2019).
This region has undergone pronounced night warming (Xia et
al. 2014) and increasingly severe seasonal drought due to
hydrothermal changes (Dai 2013, Zhao and Dai 2017). Thus,
understanding the vulnerability of subtropical tree species to
drought mortality under nocturnal climate warming is crucial for
predicting future forest productivity and dynamics. To identify
whether night warming can exacerbate water stress during
drought, we imposed a drought treatment on two subtropical
species of contrasting stomatal regulation with fundamentally
different xylem anatomic architecture (i.e., relatively anisohydric
ring-porous Castanopsis sclerophylla and relatively isohydric
diffuse-porous Schima superba) in a greenhouse under ambient
and elevated night-time temperature. We assessed the effects of
night-time warming on the tree survival time and its controlling
processes and traits, such as leaf photosynthesis, night-time
respiration, transpiration, leaf water potential and water-use
efficiency. We hypothesized that (1) night warming would
shorten the survival time of seedlings during drought for both
species, (2) night warming would accelerate seedling mortality
by inducing a faster decline in predawn leaf water potential due
to increased water loss during the night and enhanced carbo-
hydrate consumption due to higher respiration during drought,
resulting in higher susceptibility to both hydraulic failure and
carbon starvation, (3) the rather anisohydric C. sclerophylla
would experience a faster decline in water status under night
warming than rather isohydric S. superba. In contrast, night
warming would trigger earlier stomatal closure in S. superba
than C. sclerophylla during drought and result in considerable
carbohydrate depletion compared with that in C. sclerophylla.

Materials and methods

Plant material

This study selected two common evergreen species (i.e., C.
sclerophylla and S. superba) that are widely distributed through-
out subtropical ecosystems across East China. The two species
were chosen as representative of two different types of xylem
anatomic architecture (ring- vs diffuse-porous) and contrasting
stomatal regulation strategies (anisohydric vs isohydric)
(Figures S2-1 and S2-2, Table S2-1 available as Supplementary

data at Tree Physiology Online). Castanopsis sclerophylla is a
ring-porous species and exhibits a rather anisohydric behavior.
In comparison, diffuse-porous S. superba adopts a more
anisohydric strategy and has greater cavitation-resistant xylem
than C. sclerophylla (xylem water potential inducing 50% loss
of hydraulic conductivity: P50 = −5.65 MPa vs −4.39 MPa,
respectively, Table S2-1 available as Supplementary data at Tree
Physiology Online ). We obtained 3-year-old seedlings of two
species from a seedling nursery in Ningbo city, Zhejiang, China
(29◦32′N, 120◦21′E). In May 2019, 18 seedlings per species
were planted into 19 l circular pots and kept well-watered
within a naturally lit greenhouse at East China Normal University,
Shanghai, China (31◦14′N, 121◦24′E). At the start of the
experiment, the mean plant height and basal stem diameter
were 71.1 ± 2.3 (mean ± SE) cm and 5.7 ± 0.3 cm for C.
sclerophylla, and 76 ± 2.1 cm and 6.6 ± 0.3 cm for S. superba,
respectively.

Experimental design

Following roughly 2 months of growth, one-half of the seedlings
from each species (9 of 18 individuals from each species)
with similar height and stem size were randomly assigned into
two treatments, including control and 2 ◦C warming during the
night (06:00 p.m.–06:00 a.m.). The warming treatment was
conducted with infrared radiators (Langpu Co. Ltd, Guangzhou,
China), positioned 0.5 m above the target leaves. Identical
heaters without lamps were positioned in ambient treatments to
consider the shading effects of the infrared radiator. On average,
the temperature treatment resulted in average night warming by
3.1 ◦C (P < 0.001), rising mean night-time temperature from
31.6 ◦C to 34.7 ◦C (Figure S1 available as Supplementary data
at Tree Physiology Online). Initially, the mean soil volumetric
water content (VWC) was similar between the temperature
treatments in both species with a mean of 0.35 ± 0.32 m3/m3,
and plants were then left to dry with no water addition until all
nine seedlings for each species in each temperature treatment
were dead (Figure S2 available as Supplementary data at Tree
Physiology Online). VWC from 0 to 10 cm depth was measured
in each plant with FieldScout TDR 350 Soil Moisture Meter
(Spectrum Technologies, IL).

Plant growth metrics

We measured the height of the main stem and basal diameter of
nine seedlings in each temperature treatment at the initial and
end stages of the experiment. Leaf area was measured with a Li-
3100 leaf area meter (Li-Cor, Lincoln, NE, USA) and leaf mass
per unit area was calculated as leaf mass after drying for 48 h
at 70 ◦C, divided by leaf area. All seedlings were measured for
height, diameter and leaf area.

Gas exchange and tree water status measurements

Leaf gas exchange was measured on one leaf of each seedling
with a Li-Cor 6800 portable photosynthesis system (Li-Cor)
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equipped with the red/blue LED light source. Night-time res-
piration (μmol m−2 s−1) was determined between 21:00 and
24:00h, and net photosynthesis (μmol m−2 s−1) was measured
between 9:00–11:00h during the following day in weekly
intervals. These repeated measurements were done on fully
developed leaves randomly selected from the upper canopy
at each point. The reference CO2 concentration and rela-
tive humidity in chambers were set to 400 p.p.m. and 50–
60%, respectively. The light environment in the chamber was
regulated at 0 μmol m−2 s−1 for respiration at night and
1000 μmol m−2 s−1 for photosynthesis during the day. After
30 days of drought, leaf water potential was measured before
dawn between 05:00 and 06:00h during the same day for gas
exchange measurement using a Scholander pressure chamber
(model 670, PMS Instrument Co., Corvallis, OR, USA).

Stomatal size and density

On 6 August 2019, sun-exposed leaves were collected early
in the morning for measuring stomatal anatomical traits. The
stomata were taken from the abaxial side of the leaves. The
abaxial epidermis of the leaves was cleaned by a degreased
cotton ball and then applied clear nail varnish at the max-
imum leaf width for about half an hour. Stomatal size and
counts were determined from the clear nail varnish impression
at ×400 magnification by light microscopy (Olympus BX51,
Tokyo, Japan), and digital images were captured with a dig-
ital microscope eyepiece (HiROCAM MA88-300A, Shanghai,
China). Stomatal size S was calculated as the guard cell length
× guard cell pair width. Stomatal density D was expressed
as the number of stomata per 400 × 400 μm field of view.
The pore area of the stomata was used to represent the
stomatal aperture. The leaves used for stomatal morphology
were fully mature under the well-watered control environment,
so a potential drought and night-warming effect could not be
tested.

Non-structural carbohydrates sampling and analysis

To detect the dynamic of leaf non-structural carbohydrates
(NSCs) over the night, we sampled leaves before sunrise at the
41 days of drought (three to five seedlings per species per
treatment). Before NSC quantification, foliar samples were dried
at 105 ◦C for an hour and at 70 ◦C for 48 h and ground to
a powder fine enough to pass a 100-mesh screen. The NSC
mainly includes soluble sugars and starch, which were analyzed
using 0.1 g of dried tissue following the anthrone method and
UV spectrophotometry methods.

Seedling mortality

Plants were monitored daily for leaf defoliation, and we defined
mortality as 100% of their canopy foliage turning brown or
respiration approaching zero (Lu et al. 2019).

Statistical analyses

In this study, WUE was calculated for each treatment using the
following equation:

WUE = Anet

E

where WUE is water-use efficiency (μmol CO2 mmol−1 H2O),
Anet is leaf net photosynthesis (μmol m−2 s−1) and E is
transpiration (mmol m−2 s−1).

We analyzed how night-time warming shaped tree mortality
using survival analysis with Kaplan–Meier survivorship curves
for each treatment with the ‘survival’ package (Therneau 2020).
This analysis compared the probability of survival through time
and produced a log-rank test P-value. We also performed a t-
test to examine the effects of night warming on the average
survival time under drought. In addition, we used the Cox
proportional hazards model to combine species and treatment
effects into a single survival model (Therneau 2020) and
estimate the proportional hazard ratios related to the species
and temperature treatment.

All data are reported as means ± SE. Two-way ANOVAs were
used to analyze the main and interactive effects of temperature
treatment and species on plant growth metrics. For the time-
series data during drought, we used a linear mixed-effects model
to evaluate the main and interactive effects of temperature treat-
ment, species and time, with time treated as a continuous vari-
able and the number of sample sizes considered as a random
factor. The response variables accessed in this model include the
time-varying VWC, night-time leaf temperature (night-time Tair),
night-time respiration (Rnight), night-time stomatal conductance
(gnight), night-time transpiration (Enight), predawn leaf water
potential (�pd), net photosynthesis (Anet), daytime stomatal
conductance (gs), daytime transpiration (E) and WUE (Table S1
available as Supplementary data at Tree Physiology Online). We
repeated the same analysis for two species separately (Table S2
available as Supplementary data at Tree Physiology Online). All
analyses were performed in R version 4.0.3 (http://www.R-pro
ject.org/), and results were considered significant if P < 0.05.

Results

Effects of night warming on soil moisture and plant growth

The mean soil VWC of plants gradually decreased with time
under treatments of both species and temperatures. Soil VWC
declined faster under warming treatment with C. sclerophylla
(P < 0.05, Figure S2 available as Supplementary data at Tree
Physiology Online) but not S. superba. At the beginning of the
drought experiment, there was no difference in plant height and
stem basal diameter between temperature treatment (P > 0.05)
and species (P > 0.05). The warming treatment did not change
the plant height or stem basal diameter at the time of death in
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Figure 1. Effect of night warming on drought-induced mortality for seedlings of (a) C. sclerophylla and (b) S. superba. The main plot represents the
percentage of seedlings surviving during drought. Inset denotes the mean days to drought mortality under control (C) and night warming (W) for
each species. Error bars depict ± SE (n = 9).

both species (P > 0.05, Figure S3 available as Supplementary
data at Tree Physiology Online).

Effects of night warming on drought mortality

When exposed to drought treatment, all seedlings of C. scle-
rophylla and S. superba died within 180 days and 167 days,
respectively. Under the ambient temperature treatment, the
mean time-to-mortality of C. sclerophylla and S. superba was
143 and 134 days, respectively. On average, seedlings under
night warming died 31 ± 5 and 28 ± 10 days earlier than under
the ambient temperature for C. sclerophylla and S. superba,
respectively (Figure 1). Night warming significantly shortened
the seedling death time caused by drought (P < 0.05) and
the reduction in C. sclerophylla (21.6%) was similar to that in S.
superba (21.1%). Based on the Cox proportional hazard model,
seedlings under night warming had a 1.6 (95% CI: 1.03–2.17,
P < 0.05) times greater mortality risk than those under ambient
temperature. No significant difference in mortality risk was found
between the two species.

Effects of night warming on nocturnal respiration, leaf water
potential and leaf NSC

After the start of the drought treatments, nocturnal respira-
tion rates and predawn leaf water potential of both species
declined over time (P < 0.001). Nocturnal respiration of C.
sclerophylla did not differ between the ambient and elevated
night-time temperature treatments (Figure 2a). In contrast, S.
superba under night warming had higher nocturnal respiration
than those under ambient temperature. The warming-induced
stimulation of nocturnal respiration was consistent across the
first 120 days of drought (P < 0.001, Figure 2b), but exhibited

large variability after that. Predawn leaf water potential of
C. sclerophylla was markedly reduced by night warming, and
the treatment effects were increased over time (P < 0.001,
Figure 2c). In comparison, a negative effect of night warming
on the leaf water potential of S. superba was only observed at
51, 58 and 65 days of drought. The overall effect of warming
was not statistically significant for the leaf water potential of S.
superba (P = 0.227, Figure 2d). Moreover, total NSC and starch
concentrations in leaves of both species were unchanged by
night warming (Figure 3). Only the soluble sugar concentration
in the leaves of C. sclerophylla exhibited a significant increase
under night warming (P < 0.05).

Effects of night warming on WUE

During drought, C. sclerophylla consistently maintained higher
Anet and transpiration rates, and smaller WUE than S. superba at
both temperatures (Figure 4). In both species, Anet and transpi-
ration rates of the ambient-temperature seedlings declined over
time and reached zero around 177 and 140 days of drought for
C. sclerophylla and S. superba, respectively (Figure S4a and b
available as Supplementary data at Tree Physiology Online).
Night warming significantly affected the responses of Anet and
transpiration rates to drought stress. Anet of both species
showed a more marked decline under night warming generally
after 46 days of drought and was near zero around 120 days
of drought (Figure S4a and b available as Supplementary data
at Tree Physiology Online). Transpiration rates of C. sclerophylla
were not significantly different between temperature treatments
over time and therefore led to decreased WUE under night
warming (Table S2 available as Supplementary data at Tree
Physiology Online, Figure 4). A significant decline in WUE of
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Nocturnal warming accelerates drought-induced seedling mortality 1169

Figure 2. (a, b) Nocturnal respiration rate (Rnight) and (c, d) predawn leaf water potential (ψpd) of (a, c) C. sclerophylla and (b, d) S. superba during
drought. Blue symbols, grown under ambient temperature, red symbols, grown under night warming. Error bars depict ± SE (n = 9). The colored
bracket lines indicate days when the number of seedlings was <9. Graphical summary of stomatal traits is modified from micrographs of stomata for
two species.

C. sclerophylla was detected at day 36 and 58 of drought
(Figure S4e available as Supplementary data at Tree Physiology
Online). By contrast, the trend in transpiration rates of S. superba
was similar to the trend observed in Anet, thus contributing to
an unchanged WUE for S. superba (P = 0.96, Figure 4). No
interaction between night warming and measurement time on
Anet (P = 0.242) or transpiration rates (P = 0.58) was observed
for S. superba.

In both species, WUE showed a peak response with predawn
leaf water potential under drought stress (Figure 5). Maximum
WUE of C. sclerophylla (calculated at the water potential when
the value peaked) was lower in seedlings under night warming
(3.11 μmol CO2 mmol−1 H2O) compared with those under
ambient temperature (4.61 μmol CO2 mmol−1 H2O). In con-
trast, the shape of WUE against predawn leaf water potential
for S. superba did not differ between temperature treatments

with the maximum WUE as 4.72 and 4.57 μmol CO2 mmol−1

H2O under control and elevated night-time temperatures.

Differences in stomatal morphology between two tree species

The two species, i.e., C. sclerophylla and S. superba, differed
in stomatal shape and pattern. Stomata of C. sclerophylla had
dumb-bell-shaped guard cells (Figure 6a), whereas S. superba
had kidney-shaped guard cells (Figure 6b). Castanopsis sclero-
phylla had a significantly smaller guard cell area than S. superba
on the abaxial epidermis, ranging from 340 to 941 μm2 in C.
sclerophylla and between 540 and 1355 μm2 in S. superba
(P < 0.05, Figure 6c). Conversely, the stomatal aperture was
1.31 higher in C. sclerophylla than S. superba (P < 0.05,
Figure 6d). Stomatal density in C. sclerophylla was significantly
higher on the adaxial epidermis than S. superba (P < 0.05,
Figure 6e).
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Figure 3. Foliar NSCs of C. sclerophylla and S. superba at Day 41 of drought. Blue bars, grown under ambient temperature; red bars, grown under
night warming. Error bars depict ± SE (n = 3–4).

Discussion

Nocturnal warming shortens seedling survival time under
drought

Our results support the hypothesis that night warming short-
ened the seedling survival time of the two subtropical species
during drought (Figure 1). The increased mortality at higher
night-time temperatures reported by other experimental (Bal-
ducci et al. 2014) and observational (Clark et al. 2010) studies
also support our hypothesis. A drought mortality experiment
simulated an array of increasing temperatures from 3.6 to
7.7 ◦C on two conifer species (Adams et al. 2017). They found
that time-to-mortality during drought linearly decreased with
increasing temperature, suggesting that the response of time-
to-mortality during drought was a constant proportion of the
temperature change. To better understand the response mag-
nitudes of drought-induced mortality under diurnal and night-
time warming, we further calculated a mean reduction in time-
to-mortality during drought per 1 ◦C temperature increase, from
our experimental results as well as results reported for Pinus
edulis (Adams et al. 2009, 2017), Eucalyptus radiata (Duan
et al. 2014), P. radiata (Duan et al. 2015), Pinus ponderosa
(Adams et al. 2017) and 10 tree species from the south-central
USA (Will et al. 2013). In this study, night warming can reduce
the time to drought-induced mortality of C. sclerophylla and S.
superba by 7.0% and 6.8%, respectively, by per 1 ◦C increase
of night temperature. In comparison, those diurnal-warming
experiments with 3–4 ◦C increase found similar decreases in
survival time from 0 to 4.7% under per 1 ◦C increase of daily
temperature (Adams et al. 2017). The reduction in drought
survival time under night warming is more significant than
the reported negative effect of diurnal warming on seedling
mortality of other tree species. The strong response of drought
mortality to nocturnal warming suggests that subtropical trees
may exhibit higher vulnerability to extreme drought under the
rapid increase in night-time temperature.

Different roles of leaf respiration and water potential in
regulating drought mortality

During drought, the night-warming treatments had contrast-
ing effects on nocturnal respiration between C. sclerophylla
and S. superba (Figure 2a and b). Nocturnal respiration of C.
sclerophylla was not affected by night warming, whereas it
was increased in S. superba. It has been shown that warming
effects on leaf nocturnal respiration diverged under differential
water regimes. For instance, the warming-induced increase in
nocturnal respiration disappeared during drought in Eucalyptus
(Duan, et al. 2013). In our experiment, night warming increased
nocturnal respiration under well-watered conditions (Unpub-
lished data), but this positive response of C. sclerophylla was
erased under drought stress (Figure 2a). Under drought stress,
no effect of warming on the carbohydrates was observed in the
leaves of both species (Figure 3). Therefore, the insignificant
effect of night warming on nocturnal respiration of C. sclero-
phylla was not linked to substrate supply differences. Instead,
decreased demand for respiratory products under drought con-
ditions was most likely responsible for the unchanged noc-
turnal respiration during drought (Atkin and Macherel 2009,
Kumarathunge et al. 2020). In contrast, S. superba exhibited
higher nocturnal respiration under night warming combined
with drought (Figure 2b). The increased nocturnal respira-
tion of S. superba could reflect drought-mediated increases
in the need for maintenance respiration to support hydraulic
repair in dry soils (Atkin and Macherel 2009, Brodersen and
McElrone 2013, Rowland et al. 2015). No response of NSC
consumption to night warming despite changes in noctur-
nal respiration and photosynthesis indicates adjustments to
internal tree NSC dynamics. Potential explanatory processes
include feedback inhibition of photosynthesis, translocation of
NSC between other tree tissues and leaves and sink limitation
(Myers et al. 1999, Körner 2003, Adams et al. 2013). The
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Figure 4. (a) The relationship between net photosynthesis rate (Anet) and evaporation rate (E) of C. sclerophylla (open symbols) and S. superba
(closed symbols). Blue symbols, grown under ambient temperature; red symbols, grown under night warming. Data are the means of each plant. (b)
Anet, (c) E and (d) WUE of two tree species grown under ambient and warmer night temperature. Error bars depict ± SE (n = 14–40). Asterisks in
b–d denote significant difference of treatment effects at P < 0.05.

warming-induced reduction in survival time during drought
is consistent with a pioneer mortality experiment in which
warming increased cumulative respiration (Adams et al. 2009)
but did not affect foliar NSC (Adams et al. 2013). Our result
in S. superba additionally provides evidence that the warming-
induced increases in respiration were not reflected in changes
to foliar NSC. However, substantial reductions in net carbon gain
induced by night warming suggest clear signs of disturbing
carbon metabolism, which may lead to greater susceptibility to
drought mortality.

Night warming accelerated the decline in predawn leaf
water potential of C. sclerophylla with increasing drought
stress (Figure 2c). In contrast, the warming effects were only
pronounced during early drought in S. superba (Figure 2d). The
negative effect of night warming on predawn leaf water potential
could be explained by increased evapotranspiration associated
with an elevated VPD (Zeppel et al. 2011, Sadok and Jagadish
2020). Nocturnal transpiration of C. sclerophylla was enhanced
under night warming (Figure S5, Table S2 available as Supple-
mentary data at Tree Physiology Online). This positive response
could partially account for the more rapid soil dry-down
(Figure S2 available as Supplementary data at Tree Physiology

Online) and may inhibit overnight water potential recovery
during the night (Howard et al. 2009). Moreover, in both
species, drought substantially decreased leaf water potential to
values close to −15 MPa in both temperature treatments. Given
the low water availability in branch tissue of droughted trees,
we suggest that stems and branches of these trees experienced
extensive cavitation under heat and drought stress. Thus, regard-
less of temperature treatments, drought-induced mortality in this
study is linked to the immediate hydraulic dysfunction.

Contrasting responses of WUE to night warming between the
two species

Our results showed that night warming could amplify lethal
drought stress by negatively affecting plant WUE (Figure 4,
Table S1 available as Supplementary data at Tree Physiology
Online). Many studies have reported improved WUE under
drought stress (Brodribb 1996, Peters et al. 2018) and
night warming (Xia et al. 2009). However, such water-saving
effect quickly disappeared during the combined heat-drought
stress (Birami et al. 2020). Our findings suggest that night
warming may shrink or even reverse the potential benefits of
WUE upregulation during droughts (Coupel-Ledru et al. 2016,
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Figure 5. The relationships between water-use efficiency (WUE) and decreasing leaf water potential of (a) C. sclerophylla and (b) S. superba under

ambient and warmer night temperature. The regression model used to fit the data as: control = 0.94 × x2.34

e0.44x (R2 = 0.44, P < 0.001), night warming

= 1.04 × x1.58

e0.29x (R2 = 0.16, P < 0.05) in C. sclerophylla, and control = 0.84 × x2.24

e0.38x (R2 = 0.44, P < 0.001), night warming = 2.17 × x1.24

e0.25x

(R2 = 0.18, P < 0.05) in S. superba.

Sadok and Jagadish 2020). In this study, the reduction in WUE
induced by night warming could exacerbate the negative impact
of night warming on plant assimilation, meaning plants face a
higher risk of carbon starvation and drought mortality (Gessler
et al. 2018).

At the species level, WUE was significantly reduced by night
warming in C. sclerophylla, whereas was unaltered in S. superba
(Figure 4, Table S2 available as Supplementary data at Tree
Physiology Online). Reduced WUE of C. sclerophylla was related
to a warm-induced decrease in photosynthesis, considering
the unchanged transpiration (Figure 4b–d). The photosynthetic
reduction induced by night warming is also observed in other
species (Mohammed et al. 2013, Liao et al. 2020) and could
be explained by the increased night-time water loss under night
warming (Sadok and Jagadish 2020). However, S. superba, in
which photosynthesis and transpiration declined at a similar
rate, exhibited constant WUE under night warming (Figure 4).
The steady WUE of S. superba may efficiently save water and
maintain hydraulic functions under drought conditions but may
cause severe carbon deficiency over long-time periods (Gessler
et al. 2018). During extreme water stress, the responses of WUE
observed in S. superba could be explained by deficient carbon
and water fluxes rather than physiological recovery (Hartmann
et al. 2013, Wang et al. 2021).

Consistent with some previous studies (Yang et al. 2021,
Yao et al. 2021), our results observed a peak response of
WUE to decreasing predawn leaf water potential (Figure 5).
Upregulated WUE is a vital adaptive capacity for plants to
cope with water deficit under both ambient and warming

environments (Duan et al. 2018). However, plants may have
reached a physiological threshold in their ability to improve
WUE owing to drought-induced stomatal closure under severe
heat and drought stress and ultimately cause the breakdown
of WUE (Linares et al. 2009). It has been suggested that a
threshold may exist in the adaptive capacity of the trees to
face drought (Penuelas et al. 2008, Carnicer et al. 2011). In
addition, as the drought progressed, photosynthesis decreased
at a greater rate than transpiration in response to night warming,
inducing a lower maximum WUE of C. sclerophylla. The warming-
induced downregulation of WUE could indicate biochemical
limitations on carbon assimilation, which are known to become
considerable under severe drought (Flexas and Medrano 2002,
Zhao et al. 2013).

Role of stomatal morphology in affecting drought mortality
under night warming

Our study found no significant differences in warming effects
on time-to-mortality during drought between C. sclerophylla and
S. superba. However, night warming had contrasting impacts
on carbon and water dynamics between the two species
under water deficit. The differential responses of two species
to night warming can be linked to species-specific stomatal
traits and water-use strategies (Figure 6). Even though C.
sclerophylla had small guard cells, wider stomatal apertures with
higher stomatal density correspondingly induce larger stomatal
conductance for C. sclerophylla than S. superba. These mor-
phological traits feature C. sclerophylla with relatively high gas
exchange capacities and evaporation but low WUE (Figure S2-3
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Figure 6. Light micrographs showed contrasting stomatal traits between (a) C. sclerophylla and (b) S. superba. The bar plot is the mean value of
(c) stomatal aperture, (d) stomatal size S and (e) stomatal density D. Error bars are ± SE (n = 9). Asterisks in c–e denote significant difference of
treatment effects at P < 0.05.

available as Supplementary data at Tree Physiology Online)
(Franks and Casson 2014). However, ineffective stomatal
control of water loss makes C. sclerophylla prone to cavitation as
drought stress progressed. By contrast, S. superba has a tighter
stomatal regulation, higher and stable WUE, and more isohydric
behavior than C. sclerophylla (Figures S2-1, S2-2 and S2-3
available as Supplementary data at Tree Physiology Online).
Such conservative strategies allow this species to sustain
hydrated and thus mitigate hydraulic failure during drought
(Martin-StPaul et al. 2017, Yi et al. 2019). Consequently,
anisohydric C. sclerophylla dropped leaf water potential in
response to night warming during drought, whereas isohydric

S. superba holds similar water potential between ambient and
elevated night-time temperature treatments.

Many studies have indicated that species with a strong control
on stomata may be advantageous under water deficit due to
their conservative water-use strategies (Brodribb et al. 2009,
McAdam and Brodribb 2012). Our results suggest that the
impacts of night warming on drought survival are affected by
differences in physiological and anatomical adjustments among
tree species to cope with drought. Therefore, when dealing
with species-specific responses to drought, it is crucial to quan-
tity multiple leaf traits among species to detect physiological
mechanisms involved in drought mortality and predict plant
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vulnerability to future climate change (Linares and Camarero
2012, Medlyn et al. 2016, Gessler et al. 2018). As competition
is the primary driver of small-tree mortality in forests (Lu et al.
2021), we also suggest future work to access the competition
effects among species of different drought tolerance in under-
standing the carbon and water responses to drought under night
warming (Medlyn et al. 2007, Lu et al. 2020, Jiang et al. 2021).

Conclusions

Night warming accelerated seedling mortality of two subtropical
species during drought. Predawn leaf water potential and leaf
WUE of C. sclerophylla were significantly lower under night
warming, which could explain the earlier drought mortality of
C. sclerophylla under night warming. Although night warming
showed no effect on nocturnal total NSC in leaves of both
species, increasing nocturnal respiratory losses of S. superba
and reducing photosynthetic rates of both species resulted in
reduced leaf net carbon gain in both species under night warm-
ing. These negative effects were more pronounced in S. superba
than C. sclerophylla. Drought mortality in S. superba appears to
be related to carbon metabolism changes under night warming.
The distinct responses of C. sclerophylla and S. superba to
nocturnal warming during drought result from their contrasting
drought response strategies and related stomatal morphological
traits. This study underlined the importance of considering
the integration of both morphological and physiological traits
contributing to drought mortality, along with their responses
to night warming. Our findings underscore the importance of
nocturnal warming in mediating the tree survival process during
drought.
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